Kaigun: Steampunk Chapter 7

Making Steam


Andrei Michal found Sergei's dried up little corpse rolled in blankets, only a little mouse-eaten. He looked satisfied, as though he'd died on a full stomach with all the kids married and next year's barley crop safely in the ground. Andrei hoped it was true, but he doubted it.  He couldn't spent too much time worrying about that though, because of the wonderful machine!  After running back, shouting to wake everyone up and tell them about the body, and the museum, and the things he'd seen, he had mostly been shushed. They dragged out the old curator ("because nobody wants to sleep with a dead man") and mostly went back to sleep. One of the girls, Anjin, seemed a little bit interested in all the little books and the shiny control panels, and Dmitri was roused enough to at least look around, though he found the aircraft more interesting.

Not Andrei. He knew what he was looking at was just right, just modern enough to be potent, just archaic enough to be operable in the current sorry state of the Union of Soviet Socialist Republics. Those fancy fighter jets would never fly again, never even find the exotic fuel for their finicky bellies, or a pilot with training to know which button to push but this thing, this "Sovietski Kaigun," this was obvious in the same way a blunt instrument advertised it's purpose. A rolling fire-powered monster intended to fight old wars against moldering foes no longer ominous, it could be run by a starving band of villagers, he knew it.

"And this," thought Andrei Michal, patting the 14 foot long steam rifle, "this is obvious too. It is a chicken gun."

Andrei curled up not so far from where he'd found the old curator, and fell asleep alternately wondering how to awaken the somnolent Kaigun, and imagining the stupendous pot of soup he would make afterwards. Where would they get enough onions?

The next day, there was some interest, peaking after Dmitri happened across the wine cache, and tapering rapidly thereafter as people, despite the best intent to ration, drank rather more than they should  on empty bellies, and after so many weeks without any liquor to stay in practice.  Still, Russian peasants (and they now thought of themselves as that, though only privately) are nothing if not good drinkers, and by late afternoon, an earnest if raucous committee deigned to stand around the Kaigun, poking at levers, smearing the protective red grease, and thumbing the manuals.  Everyone considered the monster, a museum piece after all, to be surely disabled, and if by imperceptible means, well, it was plainly complicated enough to have had a key valve removed, concrete poured in some essential plumbing, or a critical cotter pin pulled, even if nonesuch could be found by a band of mere vagabonds.

Then Anjin found the precise accountant's inventory of projectiles, and it's obvious discrepancy,  and then tiny scratches around the otherwise factory-perfect muzzle of the starboard rifle, itself elevated a couple of degrees out of it's caging mechanism, and someone noticed the Kaigun was aimed bodily at two wide rolling hangar doors, padlocked and rusting now. Every attitude changed.

Outside, beyond the doors, across a road and a dilapidated park was an ancient sculpture, Soviet in style, abstract and curved, welded steel evoking the flag's hammer and sickle.  ...with a two foot hole blown through the sickle's decimeter blade as though by some monstrous torch. Nothing much could be found of the supposed "bolt" but standing in the notch of a collapsed cinderblock wall another 20 meters beyond the sculpture, one could look back, through the melted hole and watch the hangar door rolling slowly open (the locks having been opened with keys from the curator's breast pocket) and unveiling the rifle's maw as it did.

Now, people were interested, galvanized.  Plans were laid, Andrei congratulated, more wine drunk, vengeance plotted, threats trumpeted into the sunset, Andrei carried around the museum in triumph, dancing, even and yet more drinking and then sleep with headaches sure to follow.

Cosmology & Einstein

First, here's the link to my first post, talking about time vs speed of light. THE Horizon.
Next, here are some neat facts.
 Here's the spreadsheet of cool facts from Brian Cox's lecture right before they found Higgs. That lecture had in it the following.  First, everything's either the standard model or relativity and we can't tie them together yet. Then a divergence into the universe, introducing  the Hubble constant, which is 1/13.4billion yrs, so that's roughly when everything was simultaneously here, i.e. the age of the universe. It's derived from known brightness of some supernovae. (distance) and red shifts (velocity) of everything we see.  Assuming the redshift of the CMB is on that line, it's 13.4 billion years old.  BTW, CMB is uwave frequency now, was literally red at first.  After H0, Cox talked about particles. up,down, neutrino, electron being all you need. Two more columns of heavier versions, then photon & other force carriers.  Nothing for gravity. Higgs field posited, the particle being very heavy & thus requiring high energy to make.  After the switch to gravity & Einstein, he noted the light clock & Lorentz contraction as a consequence.

Well, that's just a lot of notes from the show.  Then I started reading about relativity a bit, simultaneity & constancy of c.  The first question is, what about a light-speed game of ping-pong, where the table is aligned with the velocity?  The metaphor's imperfect (air hockey would be better) because there's no hypotenuse here. Instead just imagine the balls going straight back and forth. In the light clock meanwhile, photons go up and down between mirrors, perpendicular to v,"tick, tock."  Onboard a speeding train, let's say the clock (tic,toc) and the game (ping pong) are perfectly synchronized, one second travel each way for both the pendulum and pingpong ball. That's my view aboard the train.  What about to you, standing by the tracks?

I've got 3 things to discuss and quite difficult without pictures but here goes...

First, the standard light clock explanation. To you, the clock photons travel a diagonal, the hypotenuse of a triangle. (For ease of computation, say v =c/2 and a light-second's worth of distance is d, henceforward.) That lets you calculate, based on the root(5)* distance traveled after a tick and a tock, "the clocks on that train must be running slow if they think that's a second!"  From the ratio of sqrt(5) to 2 you calculate the ratio of time slowing aboard the train.
{*This last is wrong, t' = t/sqrt(1-v^2/c^2), says many sources. I didn't immediately see my error, but it calculates to 15%, not 12% so I'll use that below. Update: wikipedia clarifies the answer, which is that the base leg is shortened because it's t', the quicker-ticking observer's clock from which frame we make this measurement, while the beat that determines the distance traveled is at the slower moving clock rate. Anyway, it complicates the algebra slightly.}

Second, the train has to shrink. That's because the pingpong and the clock are synchronized. The forward travelling pingpong ball also takes 1 sec (onboard time) and being synchronized, 1.15sec,  observer time to cross the table one way, from "ping" to "pong" so to speak. Unlike the pendulum, those ping-pong photons will not travel the whole hypotenuse so to stay synchronized with the "tic-toc" of the clock the vehicle must stretch or shrink along the velocity direction so that the pingpong ball hits the paddle just at the "tock."  With v = c/2 the numbers work out nicely. In a second's time, the ball travels the distance of the table, but the train has meanwhile moved half a second ahead.  It will take two seconds for a photon to hit the second paddle, one to cross the table, and one more to catch up to the train. Only, it will actually be 2x 1.15sec since we're working in observer time where I've already noted the train clock is running ~15% slow. Whoops, a paradox! ...it can't take that long because it's got to stay synchronized with the clock! It's got to get there in just one (dilated) second. This is why Einstein (or Lorentz) said the train has to shrink.  From the observer's perspective, we calculate the unknown distance from known time and speeds, yielding that the length of the squished table  d(squished) = (c-v)*1.118 which tells us the train has to shrink to just 18% more than half it's "real" (at-rest) length. Ok, fine.  Mind bending, but I get it.

Now my third observation stumped me: it seems sure the return of the ping-pong ball back across the table will happen in an instant, since the train, and the "ping" paddle aboard it, is rushing forward to meet it. Remember the essence of this experiment is that the balls (being photons) travel at c w.r.t. all observers. Now the observer sees relative velocity between ball and paddle of 3c/2, and distance ~d/2, so elapsed t will be ~d/3c, or just 1/3 sec! (approximation 'cause I'm temporarily leaving out the 15% time dilation for easier calculating)  How's that gonna synchronize with the tick-tock? Last night talking with Miles I convinced myself it was a consequence of the time when I make the observations, which time is itself obviously subject to lightspeed delays.  Now, I'm just confused again. However, check this out:

In the second it takes from ping to pong, the train moves half a light second (d/2) down the tracks and so it will take an extra half second for the "pong" to reach us. Along the way, the second "ping" is added because after all the report of pong is a photon and the ball is just as fast, so "ppionngg" will arrive all at once. Since I know the train's moving I expect each successive second's data to arrive an extra half second late. All together I hear ppionngg every 2.3 seconds, one sec for travel time of the ball, + one second's further train "entfernung" (distancing itself from me); so I guess it does all work out.

Last Thursday! ...and Other Abbreviations

This is just a place to collect cool abbreviations for arguments & whatnot. In cases where I've left out a reference it usually means I was just too lazy to add the link to wikipedia.

WAP, SAP The weak and strong anthropic principle, basically the universe has to be pretty special to have been friendly to human life. Strong version includes the mass of the universe, strength of gravity, all the other natural constants that make the universe "just so." There's Douglas Adams' beautiful comeback of the living puddle that wonderingly remarks how the universe fits it perfecty, "in fact it fits me staggeringly well."  (Then the sun comes out and the puddle's custom designed universe inexplicably erases it's very reason for being: how could that BE?!)  Neil Tyson answers this by talking about how much of the universe is actually hostile: stars sleeting radiation and vacuum and giant planets of frozen poison gas and so forth, but that seems more over-dramatic than on point.

Explosion, or ECQ is short for Latin: "ex contradictione quodlibet," meaning, "from contradiction, everything follows." Meaning the moon is made of cheese, etc. Chaos.  It's a neat and logical argument that you can prove anything, if you let yourself begin with A and ~A.

FOL: First Order Logic constrains the domain of functional operations. This is tidy, avoids Russell's Paradox, implies his "types"?

HOL: Higher Order Logic allows recursion, at the expense of precluding mathematical completeness (see Goedel).

Hard Problem of consciousness is explaining why we have qualia. I think this is the same as asking "what am I?" meaning my sensation of self, vs just a bag of biological parts. Is this a, or maybe the non trivial example of emergence.


Laplace's Demon: is determinism, writ large. By knowing every particle's speed and position, the history could be predicted, forward and back through time.  (No relation to Maxwell's demon, who reverses entropy by opening the thermos lid only when efficacious. (He works up a sweat though, so it's ok.))

Last Thursday(ism) is the assertion, common to creationists and solipsism, that "the earth's not really 6e9 years old, God put all those dinosaur bones there last Thursday" ...and similar invulnerable statements.

NST: (Cantor's) Naive Set Theory: any definable group is a set.

Russell's Paradox:  The list of all lists that do not list themselves.  You could make such a list, but whether adding itself to the contents or not, the title's untrue either way.  BR's solution is to require the domain of f(x)  be specified before f can be defined.  By choosing x (and closing out the the membership) ahead of f, f is precluded as an argument. This led to Russell to hierarchies of sets, none including itself. It seems (to me) to preclude recursion.  That seems silly. Obviously recursion works, but maybe it's not guaranteed to?  This is said to be related to Goedel's incompleteness theorem & Cantor's diagonal proof. Turing, in the paper describing his famous machine intelligence test, makes reference to Goedel in describing a limit to computer behavior, saying it could not answer of its brethren, "Will this computer ever answer yes to any question?"  I can't quite reason through that one.  The interesting point is that the seemingly trivial "BS" sentence "this is false." has been related by plenty of luminaries to Goedel's incompleteness theorem.  ...so it's perhaps oversimplified, but not bullshit.


Turtles, all the way down.  Hawkins popularizing somebody else popularizing William James making fun of early mystical arguments about the earth's place in the universe.  Infinite regress or VIR (V for vicious) in DFW's lingo.

Cantor's Diagonal Proof:  A function is defined that lets you create a new row in a matrix of integers (letters, reals, etc), however big the matrix is already. (The function is to make the new row of the above diagonal, with each element altered: incremented, negated or what-have you.)

V: Von Neuman Universe is the class of heriditary, well founded sets.

Help, I've fallen in a rat hole!

With a double Americano and a philosophy podcast, I have had an introduction to paraconsistent logic. That, unfortunately, is exactly what it sounds like, either of the dictionary meanings "near" or "contrary" working just fine.

There was a discussion of logics, meaning multiple different schemas for understaning things logically, an implication that living within "one true logic" was a small minded way of living in a gated community where nasty complicated ideas were just carefully excluded so they wouldn't have to be faced.  An analogy, poorly executed IMO, to various geometries (each individually consistent with it's axioms, I say) and various physics was made (Re: various physics, I feel there's just one, although there exist heirarchical layers of approximations, useful in greater degree as restrictions such as "for  v << c" apply.) Poorly executed because the same limitations were not acknowledged in logic. Wikipedia does describe paraconsistent logics as a weaker subset rather than something entirely different, an idea that appeals to me.

Are these guys nuts, or am I?  I know that I have a weakness, feel the seductive pull of the crazy, and I want to dive into these roiled waters & see where the waterfall goes. I know it's cool to be consistent  and everything, so I'm embarrassed to like these word games. Often, I've felt they were nothing more, but today in the early dark, I'm not so sure...  Hence the cry for help.

Kantor's work on infinity was cited in support of the need for paraconsistent logic, and the canonical example, the Lie Paradox, (the statement inside these parens is a lie) was ponderously explaned, like it was a computer program being iterated* and then cutely expanded into something different as follows: "this statement is either False, or Neither-true-nor-false." That's the "revenge paradox" cute not just for the name but because it is at least consistent to say that the statement is neither. I feel that the statement is just a wrapper within which the nut of the problem is hidden: is "neither T nor F" maybe nonsense?  I think maybe so, in statements of fact.

*I like "iterated" here. That has saved me from the rabbit hole in the past, and may yet let me jumar my way out of it this time, too.  In computer programming, we have very clear true (1) and false (0). Data and control systems make great use of self referential mathematics: that's the idea of feedback, signals (or ideas) looping around and affecting themselves. Coerced inexorably into what I call "reality" so they can be useful and implemented on rational things like computers, the programs simply throw an error if you try to code up a Lie Paradox, and I understand self referential math to involve either (a) a distinction in time, meaning the discrete interval prior to this one, the one after, and so forth (parenthetically the formal discrete time mathematics of  F(z)) or (b) a derivative, meaning no instantaneous change but instead a rate, i.e. the Laplace transform.  Those are a couple of pretty robust branches of math, which which I'm acquainted, and in which simultaneity of trud & false is just disallowed.  The philosophers would say I've restricted my domain the the consistent one where things make sense for my pea brain. The podcast calls Wittgenstein's "inadequate diet of examples" humorously to bear, & it's certianly true: maybe I've just been living on a flat earth model so long that I intuitively grant premises that should be picked at more carefully.

The Fed is acting.  Just look at this plot. Never mind understanding it at first, just look.  That's what the Fed owns.  The big picture is "something's up!" I'm trying to understand what, in more detail.

First of all, there's a companion liability picture.  That one, (they're both on wikipedia's Fed. Budget page)  matches, so assets = liabilities.  The new matching liabilities that paid for these things are owed exclusively to the Treasury and preponderantly to depository institutions. The Fed bought bad debt from big banks, with what money I'm not sure.